Реферат: Анализ обобщенных функций

2.


3. Преобразование Фурье обобщенных функций

Пусть основное пространство Kсостоит из бесконечно дифференцируемых комплексно-значных функций j(t) действительного переменного t, равных нулю вне некоторого конечного интервала. Преобразование Фурье функции j(t) определяется соотношением

Если рассматривать sкак комплексную переменную s= u+ iv, то

и y(t) – бесконечно дифференцируемая функция (аналитическая) во всей комплексной плоскости. Интегрируя по частям, получаем

В общем случае можно записать

Далее, если - дифференциальный полином с постоянныим коэффициентами то


Определение. Преобразование Фурье обобщенной функции f(t) называется обобщенная функция F[f(t)] = F(s), определяемая соотношением

(F[f(t)], F[j(t)]) = 2p(f(t), j(t)),

которое для регулярных функций называется равенством Парсеваля.

Свойства преобразования Фурье

1)

2)

3) F-1 [F[f(t)]] = f(t), где F-1 – оператор, обратный F, удовлетворяющий соотношению

4) F[F[f(t)]] = 2pf(-t);

5)

Приведем преобразование Фурье от некоторых обобщенных функций.

F[1(t)] = 2pd(u),

F[d(t-a)] = e-iua ,

4. Преобразование Лапласа обобщенных функций

Определение. Комплекснозначная функция f(t) действительного переменного tназывается оригиналом, если

К-во Просмотров: 570
Бесплатно скачать Реферат: Анализ обобщенных функций