Реферат: Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Лемма доказана.
ЛЕММА 6. Пусть f имеет r-ю производную f(r) . Тогда
(2.11)
и для любого натурального k
(2.12)
Доказательство: Оба неравенства непосредственно вытекают из формулы
Если k =0, то мы получаем формулу (2.11). Лемма доказана.
§3. Обобщение теоремы Джексона.
Здесь будет получено небольшое усиление теоремы Джексона о наилучших приближениях периодических функций тригонометрическими полиномами.
Лемма 7. Пусть дано натуральное число k . Существует последовательность ядер{Kn (t )}(n =0,1,...), где Kn (t ) есть тригонометрический полином порядка не выше n , удовлетворяющая условиям:
(3.1)
(3.2)
(3.3)
Эту лемму можно считать известной. Как показывает простой подсчет, совершенно аналогичный проводившемуся Джексоном, в качестве ядер Kn (t ) можно взять ядра Джексона достаточно высокой степени, то есть положить
где k0 -целое, не зависит от n , натуральное p определяется из неравенства
,
а bp выбираются так, чтобы была выполнена нормировка (3.1).
Лемма 8. Если последовательность ядер {Kn (t )} удовлетворяет всем условиям предыдущей леммы, то
(3.4)
Доказательство. Имеем, пользуясь (3.2) и (3.3)
Лемма доказана.
Теорема 1. Пусть k -натуральное число. Тогда
(3.5)
Доказательство. Пусть последовательность ядер {Kn (t )} (n =1,1,2,...) удовлетворяет всем условиям леммы 7. Положим
Очевидно, есть тригонометрический полином порядка не выше n -1. Оценим Имеем