Реферат: Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Поэтому
(3.6)
Оценим последний интеграл. Полагая в неравенстве (2.6) , получим, что
Отсюда и из (3.4) следует:
Подставляя эту оценку в (3.6), получаем утверждение теоремы. Теорема доказана.
Следствие 1.1. Пусть k -натуральное число, r -целое неотрицательное. Тогда
(3.7)
В самом деле, согласно (2.12)
и применение теоремы 1 даёт (3.7).
§4. Обобщение неравенства С.Н.Бернштейна.
В этом параграфе формулируется одно обобщение неравенства С.Н.Бернштейна для производных от тригонометрического полинома.
Теорема 2. Пусть . Тогда для любого натурального k
(4.1)
и неравенство обращается в неравенство в том и только в том случае, если
Доказательство этого неравенства опубликовано в работе С.Б.Стечкина [2].
Отметим несколько следствий из этого неравенства.
Следствие 2.1. (неравенство С.Н.Бернштейна):
(4.2)
Полагая в (4.1) , получаем
(это неравенство доказано С.М.Никольским [5]) но по лемме 2 §2 ,
откуда и следует (4.2).
Два последних неравенства одновременно обращаются в равенство только в случае, если