Реферат: Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами

Поэтому

(3.6)

Оценим последний интеграл. Полагая в неравенстве (2.6) , получим, что

Отсюда и из (3.4) следует:

Подставляя эту оценку в (3.6), получаем утверждение теоремы. Теорема доказана.

Следствие 1.1. Пусть k -натуральное число, r -целое неотрицательное. Тогда

(3.7)

В самом деле, согласно (2.12)

и применение теоремы 1 даёт (3.7).

§4. Обобщение неравенства С.Н.Бернштейна.

В этом параграфе формулируется одно обобщение неравенства С.Н.Бернштейна для производных от тригонометрического полинома.

Теорема 2. Пусть . Тогда для любого натурального k

(4.1)

и неравенство обращается в неравенство в том и только в том случае, если

Доказательство этого неравенства опубликовано в работе С.Б.Стечкина [2].

Отметим несколько следствий из этого неравенства.

Следствие 2.1. (неравенство С.Н.Бернштейна):

(4.2)

Полагая в (4.1) , получаем

(это неравенство доказано С.М.Никольским [5]) но по лемме 2 §2 ,

откуда и следует (4.2).

Два последних неравенства одновременно обращаются в равенство только в случае, если

К-во Просмотров: 543
Бесплатно скачать Реферат: Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами