Реферат: Основные понятия дифференциального исчисления и история их развития (Бакалавр)

Итак, требуется найти

lim å f (хi ) Dхi .

Определение. Сумму (1) называют интегральной суммой.

Определение . Функция f (х ) называется интегрируемой на интервале [а,в ], если существует конечный предел

lim å f (a i ) Dхi , (2)

не зависящий от того, каким образом интервал [а,в ] делится на частичные интервалы и каким образом выбираются точки a i на этих частичных интервалах, лишь бы длина максимального из них стремилась к нулю. Этот предел называется определённым интегралом от функции f (х ) на интервале [а,в ] и обозначается символом

f (х ) = lim å f (a i ) Dхi .

Для того чтобы не оставалось неясностей, сформулируем точно, как следует понимать предел (2).

п

i=1

Определение . ????? J ?????????? ???????? ???????????? ????? å f (a i )Dхi ??? max Dхi ® 0 , ???? ??? ?????? ????????? e > 0 ???????? ????? d > 0, ??? ??????????? ???????????:

f (a i )Dхi – J |< e

при любом выборе частных интервалов, D1 , D2 , …, Dп и точек a 1 , a 2 , …, a п на этих интервалах, лишь бы только выполнялось требование max Dхi ® 0, то есть лишь бы длина наибольшего (а значит, и всех) из частичных интервалов была меньше d.

Из определения определённого интеграла отнюдь не следует, что любая функция интегрируема на любом интервале. Можно подобрать такие функции, для которых определённый интеграл не существует, то есть для которых интегральная сумма не стремится к определённому пределу. Существование определённого интеграла от функции, заданной на интервале [а,в ], обеспечивает непрерывность этой функции на [а,в ], поэтому непрерывность функции на [а,в ] является достаточным условием её интегрируемости на этом интервале, то есть

Теорема 1. Если функция f (х ) непрерывна на замкнутом интервале [а,в ], то она интегрируема на этом интервале, то есть имеет определённый интеграл

f (х )dх.

Иногда на практике приходится интегрировать и разрывные функции. Приведём несколько более широкое достаточное условие существования интеграла.

Теорема 2 . Если на интервале [а,в ] функция ограничена и имеет лишь конечное число точек разрыва, то она интегрируема на [а,в ].

2.8. Основные свойства определённого интеграла.

Теорема 1. Пусть с – промежуточная точка интервала [а,в ] (а < с < в ). Тогда имеет место равенство

f (х )dх = f(х)dх + f(х)dх,

если все эти три интеграла существуют.

п

i=1

??????????????: ???????? [а,в ] ?? п ????????? ?????????? [а,х1 ], [х 1 2 ], ?, [хп– 1 , в ] ?????? ?????????????? Dх 1 , Dх 2 , ?, Dхп ???, ????? ????? с ???? ?????? ???????. ?????, ????????, хт = с (т < п ). ????? ???????????? ?????

å f (a i )Dхi

п

i=т

т

i=1

п

К-во Просмотров: 555
Бесплатно скачать Реферат: Основные понятия дифференциального исчисления и история их развития (Бакалавр)