Реферат: Решение задачи об оптимальной интерполяции с помощью дискретного преобразования Фурье (ДПФ)
Предложенная мне тема «Решение задачи об оптимальной интерполяции с помощью дискретного преобразования Фурье (ДПФ)» написана на основе книги В. Н. Малоземова и С. М. Машарского «Основы дискретного гармонического анализа». Дискретный гармонический анализ – это математическая дисциплина, результаты которой активно используются в цифровой обработке сигналов. По ходу изучения книги возникли новые задачи, две из которых приведены в разделе «Решения задач». В данной работе также сравнивается ДПФ с непрерывным преобразованием Фурье. В приложениях в случае классического преобразования приходится приближенно заменят интегралы некоторыми суммами. При этом основная трудность связана с необходимостью оценки погрешности на каждом из последующих этапов. ДПФ тем выгоднее и отличаются, что здесь с самого начала вместо интегралов имеем дело с суммами. При этом основные цели использования ДПФ также достигаются.
Рассматриваются различные преобразования - периодических векторов, среди которых центральную роль играет ДПФ. Задача об оптимальной интерполяции является приложением ДПФ.
Отдельные задачи в рамках дипломной работы мне решить не удалось. Они не вошли в дипломную работу.
Основная работа свелась к изложению основных фактов с подробными доказательствами. В начале дипломной работы имеется раздел «Вспомогательный материал», в котором кратко изложены факты, необходимые для чтения основного текста. Эти факты хорошо известны и касаются тех понятий и терминов, которые встречаются в теории чисел, в теории линейных комплексных пространств и в линейной алгебре. Все эти понятия используются для получения более важных результатов в последующих параграфах.
Далее вводится пространство - периодических векторов и устанавливается тот факт, что - линейное комплексное пространство.
Над элементами этого пространства определяются прямое и обратное ДПФ.
Решены задачи, составлена и апробирована программа, которая реализует оптимальную интерполяцию. Также составлены программы, которые вычисляют свертку двух периодических векторов и ДПФ.
При решении задачи оптимальной интерполяции сначала переходим к новым переменным с помощью ДПФ. Далее полеченную задачу решаем методом множителей Лагранжа. И, наконец, переходим к исходным переменным с помощью формулы обращения.
2
§ 1. Вспомогательный материал
В данной работе используются следующие обозначения:
Z, R, C – множества целых, действительных и комплексных чисел соответственно;
m : n – множество последовательных целых чисел {m, m+1, … , n}.
1.Корни из единицы. Допустим – натуральное число, . Введём комплексное число
(1)
По формуле Муавра при натуральном k получаем
(2)
В частности, Число называется корнем – й степени из единицы.
Формула (2) верна при k=0. Покажем, что она верна и при целых отрицательных степенях . Действительно,
Значит, получили, что формула (2) справедлива при всех
Отметим, что и при натуральном . Из (2) и свойств тригонометрических функций следует также, что при всех целых и
Применяя формулу Эйлера, имеем
2.Комплексное унитарное пространство. Будем говорить, что в комплексном линейном пространстве определено скалярное умножение, если всякой паре векторов a, b поставлено в соответствие число, обозначаемое символом (a, b) и называемое скалярным произведением векторов a и b. Причём (a, b) будет, вообще говоря, комплексным числом.
3
При этом должны выполнятся аксиомы:
1., где черта обозначает, как обычно, переход к сопряжённому комплексному числу;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--