Реферат: Решение задачи об оптимальной интерполяции с помощью дискретного преобразования Фурье (ДПФ)

Учитывая тот факт, что , приходим к равенству

(9)

Таким образом, формула (9) определяет коэффициенты Фурье вектора

16

Рассмотрим матрицу, элементами которой является компоненты векторов :

,

Это матрица ДПФ. Очевидно, у этой матрицы строки ортогональны.

Введем некоторые свойства данной матрицы и получим матрицу обратного преобразования.

Лемма 5. Матрица будет ортогональной.

Доказательство. Для того чтобы доказать факт надо показать:

1.строки данной матрицы образуют ортогональную систему векторов;

2.норма каждой строки равна единице.

Покажем сначала первое, т.е.

Далее

Лемма доказана.

17

Лемма 6. Матрица является симметрической.

Доказательство. Чтобы доказать данную лемму, покажем справедливость равенства

Итак,

,

Лемма доказана.

Раз матрица - ортогональная и симметрическая, то

Тогда т.к.

Итак, - матрица обратного преобразования Фурье.

В дальнейшем нам понадобится следующее утверждение.

К-во Просмотров: 377
Бесплатно скачать Реферат: Решение задачи об оптимальной интерполяции с помощью дискретного преобразования Фурье (ДПФ)