Реферат: Системи випадкових величин
Система двох неперервних випадкових величин однозначно визначається густиною сумісного розподілу ймовірностей
. (1.5)
Приклад 1.3. Знайти густину сумісного розподілу системи випадкових величин, якщо відома інтегральна функція сумісного розподілу
Розв’язування . За формулою (1.5)
Інтегральна функція сумісного розподілу неспадна по кожному аргументу і тому
.
За відомою густиною сумісного розподілу інтегральну функцію сумісного розподілу можна визначити за формулою
(1.6)
Приклад 1. Знайти інтегральну функцію сумісного розподілу системи випадкових величин, якщо відома густина сумісного розподілу
.
Розв’язування . За формулою (1.6)
.
Враховуючи , що (властивість 3), для густини сумісного розподілу можна записати рівність нормування
.
Ймовірність попадання випадкової точки у довільну область (рис.1.3) обчислюється за формулою
,(1.7)
яка одразу слідує з означення подвійного інтеграла
Приклад 1.5. Система випадкових величин задана густиною сумісного розподілу
.
Знайти ймовірність попадання випадкової точки у прямокутник з вершинами , ,,.
Розв’язування . За формулою (1.7)
.