Реферат: Умова перпендикулярності прямих

де f(n) (x) існує в деякому повному околі точки х0 .

11.а) Необхідна умова екстремуму функції f(x) в точці x0 :

5

6) .

7)

8)

9) .

10) .

11) .

12) де a ¹ 0 .

13)

14)

3. Основні методи інтегрування.

а) метод розкладу:

, де f(x)=f1 (x)+f2 (x)

б) метод підстановки: якщо x= j (t) , то

в) метод інтегрування частинами:

4. Формула Ньютона-Лейбніца: якщо f(x) - неперервна і F ¢ (x)=f(x) , то

.

5. Визначений інтеграл, як границя інтегральної суми:

8

де , ( n=1, 2,… ) .

IX. Диференціальні рівняння.

1. Диференціальні рівняння з відокремленими змінними.

X(x)Y(y)dx+X1 (x)Y1 (y)dy=0

має загальний інтеграл: (1)

Особливі розв¢язки, що не входять в інтеграл (1), визначаються з рівнянь: Х1 (х)=0 і У1 (у)=0.

2. Однорідні диференціальні рівняння першого порядку:

P(x, y)dx+Q(x, y)dy=0 ,

де P(x, y) і Q(x, y) – щднорідні неперервні функції одинакового степеня, розв¢язуються за допомогою підстановки y=u * x (u – нова функція).

3. Лінійні диференціальні рівняння першого порядку:

a(x)y ¢ +b(x)y+c(x)=0

можна розв¢язати за допомогою підстановки y=u * v ,

де u – не нульовий розв¢язок однорідного рівняння

a(x)y ¢ +b(x)y=0 , а v – нова функція.

4. Інтегровані випадки диференціального рівняння другого порядку:

а) якщо y ¢¢ =f(x) , то загальний розв¢язок:

;

б) якщо y ¢¢ =f(у) , то загальний інтеграл:

;

К-во Просмотров: 337
Бесплатно скачать Реферат: Умова перпендикулярності прямих