Реферат: Уравнения математической физики

Пусть - ограниченная область

, - всюду плотно в .

Доказательство.

Рассмотрим произвольную функцию .

- ограниченная.

F -продолжение f. Так как F - финитная в , то

Сепарабельность пространств Соболева.

Теорема.

Пусть - ограниченная область, , тогда :

- сепарабельное.

Построениe счётного всюду плотного множества.

Доказательство.

Рассмотрим ; продолжение функции f : .

Аппроксимируем функцию F . Множество финитных, бесконечно дифференцируемых функций (в силу свойств осреднений) всюду плотно в пространстве финитных функций .

Очевидно : .

Где коэффициенты : .

Пусть H - сепарабельное гильбертово пространство.

Определение.

Функции образуют ортонормированную систему, если , и .

Утверждение.

В каждом сепарабельном гильбертовом пространстве существует ортонормированный базис, т.е. такая система ,что .

Разложение по этому базису единственно, и : .

Равенство Парсеваля.

.

Пространство - сепарабельное гильбертово пространство с ортонормированным базисом : можно взять систему экспонент (нормированную).

Разложение в сходящийся ряд :

Определим вид коэффициентов Фурье:

проинтегрируем по частям и получим :

, где

Получаем : и следовательно :

F можно точно аппроксимировать линейными комбинациями экспонент.

Искомое множество - линейное пространство экспонент с рациональными коэффициентами.

След функции из H k(Q).

Для функции из понятие значения на (n-1)- мерной поверхности не определено.

Если удовлетворяет условиям дифференцируемости, то :

определение следа функции на (n-1)- мерной поверхности.

Рассмотрим -ограниченную область, .

- (n-1) - мерная поверхность, .

Пусть

Можно разбить на конечное число простых кусков, однозначно проецирующихся на координа тные плоскости и описывающиеся уравнением :

Для любой непрерывной функции след - её значение на поверхности, однозначно продолженое по непрерывности.

Так как f=0 вне области Q , то по формуле Ньютона-Лейбница :

Оценим :

Обе части умножим на и проинтегрируем по D :

f - финитная.

Так как может быть продолжена в финитным образом,

, причём

Существует последовательность

Отсюда следует фундаментальность последовательности следов в

- полное, следовательно - сходится,

  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • К-во Просмотров: 800
    Бесплатно скачать Реферат: Уравнения математической физики