Сочинение: Доказательство утверждения, частным случаем которого является великая теорема Ферма
Мы пришли к противоречию ( в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод . Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось рассмотреть еще 14 случаев ( пояснение ниже ) ,рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом во 2-ой части данного Утверждения 1.
********
Уравнение (15) симметрично и для n и для (для уравнения 15 они равнозначны), которые тоже могут меняться своими выражениями ( N и К). Это свойство назовем «похожим свойством n и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых n и меняются своими выражениями ( N и К )).
Условие 3
c = C
b = B
n = К
N
« Похожие» случаи «+» и «-».
(16±) с = ± С = ± ()
(17±) b = ± В =± ()
(18´±) n = ± К = ± ()
(19´±) = ± N= ± ()
Согласно одному из Выводов (формула (14)) (явно) при . Но это возможно, глядя на (19´±) = ±N= ±() только при t- четном, при которых в (16±) и (17±) c и b – четные, чего не должно быть.
Мы пришли к противоречию ( в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоятвсевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » ( пояснение следует )), мы придем к прежнему результату: c и b – четные, чего не должно быть .
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод . Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
********
Пояснение (почему не надо в Условии 3 затрагивать «новые свойства »).
Запишем Условия (1, …, 3).
Условие 1 Условие 2 Условие 3 Условие 2+3