Сочинение: Доказательство утверждения, частным случаем которого является великая теорема Ферма
b = B b = С b = B => b = C
n= N n = N n = К n = К
Если теперь поменять обозначения между собойв Условии 2+3 с на b , аb на c
в верхних двух строчках и n на , а на n внижних двух строчках, то вернемся снова к обозначениям в Условии 1, которое во 2-й части «Утверждения 1» нами будет исследовано до конца:
Условие 2+3 Условие 1
c =B b = B с = С
b = C => с = С => b = B
n = К n = N
n = N
Вывод.
1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 ,
Уравнение (1) (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. 1-я часть «Утверждения 1» ( для Условий 1(начало), 2 (начало) и 3) доказана.
*********
Часть вторая (Утверждения1)
Возможны случаи: либо , либо .
(Об «Исключении» из общего правила)
Доказательство
Условие 1 (продолжение ).
Всего случаев 16 . Два из них рассмотрели в 1-й части Утверждения 1 (Случаи «-» и «+»).
Осталось рассмотреть еще 14 случаев , когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки .
Пояснение.
Случаев всего 14 , когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки и число их равно числу Р перестановок из m= 4 элементов ( c , b , n и) по n= 1; 2; 3 элементов (плюсов (+) перед С, В, N и К) в каждом (по n = 0; 4 элементов ( Р = 1+1 = 2 ) мы уже рассмотрели - это 2 случая: Случаи «-» и «+» соответственно):
********
Случай 1.
(16)
(17′)