Сочинение: Доказательство утверждения, частным случаем которого является великая теорема Ферма

b = B b = С b = B => b = C

n= N n = N n = К n = К

Если теперь поменять обозначения между собойв Условии 2+3 с на b , аb на c

в верхних двух строчках и n на , а на n внижних двух строчках, то вернемся снова к обозначениям в Условии 1, которое во 2-й части «Утверждения 1» нами будет исследовано до конца:

Условие 2+3 Условие 1

c =B b = B с = С

b = C => с = С => b = B

n = К n = N

n = N

Вывод.

1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 ,

Уравнение (1) (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

2. 1-я часть «Утверждения 1» ( для Условий 1(начало), 2 (начало) и 3) доказана.

*********

Часть вторая (Утверждения1)

Возможны случаи: либо , либо .

(Об «Исключении» из общего правила)

Доказательство

Условие 1 (продолжение ).

Всего случаев 16 . Два из них рассмотрели в 1-й части Утверждения 1 (Случаи «-» и «+»).

Осталось рассмотреть еще 14 случаев , когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки .

Пояснение.

Случаев всего 14 , когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки и число их равно числу Р перестановок из m= 4 элементов ( c , b , n и) по n= 1; 2; 3 элементов (плюсов (+) перед С, В, N и К) в каждом (по n = 0; 4 элементов ( Р = 1+1 = 2 ) мы уже рассмотрели - это 2 случая: Случаи «-» и «+» соответственно):

********

Случай 1.

(16)

(17′)

К-во Просмотров: 335
Бесплатно скачать Сочинение: Доказательство утверждения, частным случаем которого является великая теорема Ферма