Учебное пособие: Комплексные числа

1);

2);

3) .

Действия над комплексными числами в показательной форме выполняются по правилам действий со степенями:

,(12)

,(13)

,(14)

, .(15)

Примеры

Пусть ,

.

Тогда ;

;

;

,

Числа являются вершинами правильного пятиугольника, вписанного в окружность радиуса .


Формулы Эйлера

Используем определение Þ,

так как , .

Из этих равенств следуют формулы Эйлера

Формулы Эйлера(16)

по которым тригонометрические функции и действительной переменной выражаются через показательную функцию (экспоненту) с чисто мнимым показателем.

§ 2. Целые функции (многочлены) и их основные свойства. Решение алгебраических уравнений на множестве комплексных чисел

Целой функциейили алгебраическим многочленом (полиномом ) аргумента x называется функция вида

.(1)

Здесь n – степень многочлена ( натуральное число или 0),

x – переменная (действительная или комплексная),

a 0, a 1, …, an –коэффициенты многочлена (действительные или комплексные числа),причем, a 0¹ 0

К-во Просмотров: 556
Бесплатно скачать Учебное пособие: Комплексные числа