Учебное пособие: Моделирование электрических цепей в системе Mathcad
Введение
Большинство проблем, связанных с анализом схем электрических цепей, решается в два этапа. Первый этап заключается в составлении уравнений электрической цепи в форме, позволяющей использовать законы Кирхгофа и характеристики элементов, входящих в схему. Полученные на этом этапе уравнения представляют математическую модель цепи. Второй этап заключается в решении этих уравнений путем подходящих аналитических или численных методов. При машинном анализе электрических схем оба этапа могут выполняться ЭВМ, а программу общего анализа часто называют машинной моделью.
В настоящее время имеется достаточно много пакетов программ (PSpice, ElectronicWorkbench, P-Cad) для решения электрических (электронных) схем.
Любая такая программа машинного анализа схем признает и допускает лишь базовый на6ор схемных элементов, для которых она была разработана.
Чем больший базовый набор допускает программа, тем более многофункциональной она становится.
В случае, если схема содержит элементы, не входящие в базовый набор, следует заменить каждый такой элемент некоторой «эквивалентной схемой» на основе базовых элементов. Это часто невозможно, однако, в большинстве практических случаев считается возможным заменить каждый не допускаемый элемент «почти эквивалентной схемой», называемой схемной моделью. При разработке схемной модели необходимо, чтобы она имела такое же количество полюсов, что и рассматриваемый элемент, состояла лишь из элементов, входящих в базовый набор, чтобы результирующая схема аппроксимировала характеристики соответствующего элемента с переменной точностью.
Выбор наиболее подходящей модели зависит от ее правильного соответствия режима работы цепи: динамическому переходному режиму, установившемуся синусоидальному режиму или режиму постоянного тока.
Для синтеза нелинейных моделей по переменному току возможны два подхода, которые качественно согласуются с режимом работы реальных элементов: это физический метод и метод «черного ящика».
В физическом методе делается попытка преобразовать физическую структуру и механизм работы данного прибора (элемента) в схемную модель.
В методе «черного ящика» полная характеристика схемной модели и моделируемого элемента, полученная экспериментально, должны совпадать с заданной степенью точности. При этом сначала строится статическая модель, а затем для построения модели по переменному току к ней добавляются паразитные ёмкости и индуктивности в существенно важных местах и нет необходимости понимать внутренний физический механизм работы прибора.
Успешное моделирование элементов цепи и создание их схемных моделей позволяет разработать электрическую схему, состоящую только из базовых элементов, которая используется при формировании математической модели (системы уравнений, адекватно описывающей процессы рассматриваемой цепи).
Использование пакета MathCAD в практикуме по решению задач электрических цепей позволяет при освоении курса разделить этапы формирования уравнений и численного их решения, избавляя от рутинных вычислений.
Самостоятельное формирование (моделирование) уравнений, основанных на топологии, способствует их успешному освоению, а возможность изменения численных методов их решения – подходящему их выбору.
Такой подход может быть плодотворным при освоении методов анализа электрических цепей и разработке новых.
1. Элементы теории матриц
1.1 Определение матрицы
Матрица – это прямоугольная таблица чисел. Элемент с номерами ij матрицы А, а ij находится на пересечении i -й строки и j -го столбца:
. (1.1)
Матрица размера (m ´n ) (или m ´n – матрица) имеет m строк и n столбцов. У квадратной матрицы m = n . Если а ij =0 при i ≠ j , то квадратная матрица диагональная. Если в диагональной матрице все диагональные элементы равны 1, матрица называется единичной:
. (1.2)
Если у квадратной матрицы расположенные выше (ниже) главной диагонали элементы равны нулю, то матрица – нижне – (верхне-) треугольная:
. (1.3)
Если у матрицы лишь один столбец или строка, в этом случае она называется столбцовой или строчной, или вектор-столбец, или вектор-строка, или просто вектор.
Вектор-столбец:
. (1.4)
Вектор-строка:
. (1.5)
Матрица А Т называется транспонированной к А , если элемент а ij матрицы А равен элементу а ji матрицы А Т для всех i и j
Пример 1.1. Если .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--