Учебное пособие: Основы теории вероятности
c) не курит и не болеет;
d) курит и болеет;
e) или курит, или болеет.
Решение.
Пусть А={человек курит};
В={человек с больными лёгкими}.
Тогда:
P(A)=0,7; P(B)=0,4; P(=0,25.
Имеем:
а)
b)
c)
d)
e)
Задача №46 (о легкомысленном члене жюри).
В жюри из 3-х человек 2 члена независимо друг от друга принимают правильное решение с вероятностью р, а третий для вынесения решения бросает монету. Окончательное решение выносится большинством голосов.
Жюри из одного человека выносит справедливое решение с вероятностью р. Какое из этих жюри вынесет справедливое решение с большей вероятностью?
Решение. Пусть оба (из 3-х) членов жюри сходятся во мнениях, тогда вероятность справедливого решения равна . При этом результат голосования 3-го жюри несущественен. Если судьи расходятся во мнениях, то вероятность справедливого решения 2-х судей – . Полная вероятность вынесения справедливого решения жюри из 3х членов равна:
2р(1-р)р2 р-р2 р.
Вывод: Оба типа жюри имеют одинаковую вероятность вынести справедливое решение.
Раздел 4. Основные теоремы теории вероятности
4.1 Формула полной вероятности
Группа гипотез – полная группа несовместных событий (пусть это будет Н1 , Н2 , …, Нn ). Пусть событие А может наступить лишь при появлении одного из них. Тогда вероятность события А вычисляется по формуле:
(4.1)
которая называется формулой полной вероятности.
Здесь: - вероятности гипотез;
-условные вероятности события А.
Задачи