Учебное пособие: Основы теории вероятности

c) не курит и не болеет;

d) курит и болеет;

e) или курит, или болеет.

Решение.

Пусть А={человек курит};

В={человек с больными лёгкими}.

Тогда:

P(A)=0,7; P(B)=0,4; P(=0,25.

Имеем:

а)

b)

c)

d)

e)


Задача №46 (о легкомысленном члене жюри).

В жюри из 3-х человек 2 члена независимо друг от друга принимают правильное решение с вероятностью р, а третий для вынесения решения бросает монету. Окончательное решение выносится большинством голосов.

Жюри из одного человека выносит справедливое решение с вероятностью р. Какое из этих жюри вынесет справедливое решение с большей вероятностью?

Решение. Пусть оба (из 3-х) членов жюри сходятся во мнениях, тогда вероятность справедливого решения равна . При этом результат голосования 3-го жюри несущественен. Если судьи расходятся во мнениях, то вероятность справедливого решения 2-х судей – . Полная вероятность вынесения справедливого решения жюри из 3х членов равна:

2р(1-р)р2 р-р2 р.

Вывод: Оба типа жюри имеют одинаковую вероятность вынести справедливое решение.


Раздел 4. Основные теоремы теории вероятности

4.1 Формула полной вероятности

Группа гипотез – полная группа несовместных событий (пусть это будет Н1 , Н2 , …, Нn ). Пусть событие А может наступить лишь при появлении одного из них. Тогда вероятность события А вычисляется по формуле:

(4.1)

которая называется формулой полной вероятности.

Здесь: - вероятности гипотез;

-условные вероятности события А.

Задачи

К-во Просмотров: 903
Бесплатно скачать Учебное пособие: Основы теории вероятности