Учебное пособие: Основы теории вероятности

Условные вероятности события А равны соответственно:

Р(А/Н1 )= 0,04;Р(А/Н2 )=0,05;Р(А/Н3 )=0,06.

По формуле (4.1) имеем:


Задача №51. В магазин поступили телевизоры от 5-ти фирм в следующем количестве:

Фирма 1 2 3 4 5
Количество телевизоров 5 10 6 8 11
Рi 0,98 0,8 0,6 0,3 0,1

Рi – вероятности того, что телевизоры исправны.

Найти вероятности того, что купленный наугад телевизор исправно работает (событие А)

Решение.

1) В качестве гипотез выберем события:

{телевизор i-й фирмы}, (i=).

2) Найдём вероятности гипотез, учитывая, что п=40:

Р(Н1 ) = 5/40; Р(Н2 ) = 10/40; Р(Н3 ) = 6/40; Р(Н4 ) = 8/40; Р(Н5 ) = 11/40.

3) Условные вероятности равны:

Р(А/Н1 ) = 0,98; Р(А/Н2 ) = 0,8; Р(А/Н3 ) = 0,6; Р(А/Н4 ) = 0,3; Р(А/Н5 ) = 0,1.

4) По формуле (4.1) имеем:

Задача №52. Имеются 3 одинаковых ящика, в каждом из которых по 20 однотипных деталей. Определить вероятность того, что извлечённая из наугад выбранного ящика деталь стандартная (событие А), если известно, что в 1-м ящике 18 стандартных деталей, во 2-м – 17, в 3-м – 16.

Решение. Если в качестве i-й гипотезы (i = 1,2,3) выбрать событие

Нi = {деталь из i-го ящика}, то Р(Нi ) =1/3.

Р(А/Н1 ) = 18/20;

Р(А/Н2 ) = 17/20;

Р(А/Н3 ) = 16/20.

По формуле (4.1) имеем:

4.2 Формула Байеса (формула переоценки вероятности гипотез)

Пусть событие А может наступить лишь при условии появления одной из гипотез (см п.4.1). Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формуле Байеса:

(4.2)

Задачи

К-во Просмотров: 900
Бесплатно скачать Учебное пособие: Основы теории вероятности